
AD-A245 997

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
il-ECTE

SEB18l
9 DTHESIS B'. D

THE NAVIGATION DATA LOGGER
FOR

A SUITCASE NAVIGATION SYSTEM

by

CHIN, YU-CHI
June 1991

Thesis Advisor: Dr. Uno R. Kodres

Approved for public release: distribution is unlimited.

92-03550

92 .L 032

UNCLASS1FIED
ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED Ilb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2.DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;

2b. distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6.NAME OF EEFORM&Y~G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science wpt. (if applica ble) Naval Postgraduate School

Naval Postgraduate School CS
6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. NAME OF FUNDING/SPONSORING r8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWRUNIT
ELEMENT No. INO. NO. ACCESION NO.

11. TITLE (include Security Classifcatibn)
THE NAVIGATION DATA LOGGER FOR A SUITCASE NAVIGATION SYSTEM

aster s CssF O VRED 1~l 14. DATE OF REPORT (Year, Month, Day) 6
Maste'sq~eS FRO9W()T 06NI JUNE 1991 1 6

16. SUPPM1= -views expresii t is tesis are tose of tea-utorand donot retlect teo F cFi
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP 'A small navigation data logger software system

19. ABSTRACT (Continue on reverse if necessary and identify by block number
This thesis presents the design, implementation and description of a Data-Logger for the Suitcase Navigation

System. All the programs and examples presented in this thesis were implemented in the Ada programming language,

which has sucessfully incorporated the low-level 1/0 ports communication with the high-level abstraction. The

software is portable as desired and can be reused by LCCDS when needed.

UNCLASSIFIED/UNLIMITED Q] SAME AS RPT. Q3 DTIC USERS UNCLASSIFIED
no~ sIL INIIUL2b ELPOElnld Area Code) I2C EYMO

O FORM 1473,es4 MAR 83 APR edbton may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCI .ASSWIFD

Approved for public release; distribution is unlimited

THE NAVIGATION DATA LOGGER
FOR

A SUITCASE NAVIGATION SYSTEM

by
Chin, Yu-Chi

Commander R. 0. C. NAVY
B. S. Chinese Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
JUNE, 1991

Author: zjt.- "11
Chin,u-Chi

Approved By: z /ti/ A .
Uno R. Kodres , Thesis Advisor

Leigh W. Bradbw6 econd Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

THE NAVIGATION DATALOGGER
FOR A SUITCASE NAVIGATION SYSTEM

Author : Chin, Yu- Chi
Commander, R. 0. C. (Taiwan) Navy
B. S., Chinese Naval Academy, 1977

ABSTRACT

This thesis presents the design, implementation and description of a Data-Logger

for the Suitcase Navigation System. All the programs and examples presented in this thesis

were implemented in the Ada programming language, which has sucessfully incorported

the low-level I/O ports communication with highjevel abstraction. The software is por-

table as desired and can be reused by LCCDS when needed.

Acoession
For

NTIS MRA&I
DTIC TAB fl

JU: 'C 0

L'41
Avbltt C el..... .. -;-: i -:

-Acknowledgments

To my thesis advisor, Dr. Uno R. Kodres. I would like to express my sincere thank for all the

confidence and support, which has never stopped during past three quarters. The knowledge I've

learned and the joy of work done we shared, was the words for those days. I know that I've learned

a lot from the best.

Also, I want to send a special thanks to the friends here in the school, the friends we always

work together, and the friends whom always tried their best to help. Direct help from Pat Barnes,

Jeff, John, Russ, and all the technical staff in the CS Department, Thank you all very much.

To my family, I want to dedicated this thesis to the big family support, especially to my dear

wife Anne (Chin/Chang, Huei-Yen), our children Lanny (Chin, Lan-Ting) and Lanchun (Chin,

Lan-Chun). Most importantly, Thanks God.

iv

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND ... 1

B. PURPOSE OF THIS THESIS ... 1

C. THESIS ORGANIZATION .. 1

II. SUITCASE NAVIGATION SYSTEM OVERVIEW ... 3

A. INITIAL PROBLEM STATEMENT ... 3

1. The Suitcase Navigation System Project ... 3
2. The Physical System ... 3

B. SYSTEM DESCRIPTION .. 4

C. SYSTEM OPERATIONS .. 5

1. CRT display ... 5

2. Plotter ... 5
3. Data Logger ... 5
4. Remote CRT .. 6

5. Keyboard .. 6
D. REQUIREMENTS ANALYSIS ... 6

1. The Statement of Purpose .. 6

2. Suitcase Navigation System Context Diagram ... 6

3. Suitcase Navigation System Level-0 DFD .. 7

IH. DATA_LOGGER DESIGN .. 8

A. INTRODUCTION .. 8

B. DEFINE THE PROBLEM .. 9

C. IDENTIFY THE OBJECTS .. 10

D. IDENTIFY THE OPERATIONS .. 10

1. Operation 1: INITIALIZATION--Set up external Navsensors connection 10
2. Operation 2: External Nay_Sensor operation setup .. 11

3. Operation 3: LOGGER--Log and Convert ... 11
4. Operation 4: DATALOGGER-- the main program unit ... 11

5. Operation 5: POSITIONNOW --Display current data string 12
E. ESTABLISH THE COMMUNICATION ... 12

F. ESTABLISH THE INTERFACE ... 14

V

IV. DATALOGGER IMPLEMENTATION .. 16

A. SYSTEM-SENSOR INTERFACING.. 16

Code- 1: Initialization .. 16

Code-2: Setup the BaudRate... 17

B. SENSOR DATA HANDLER ... 18

Code-3: A main subprogram .. 19

C. SYSTEM DATA MANAGEMENT.. 21

Code-4: Display current position data.. 21

D. PROGRAM CODING... 22

V. DESCRIPTION OF THE DATALOGGER ... 29

A. THE REQUIRED PROGRAM STRUCTURE.. 29

1. Hardware Structure... 29

2. Software Structure.. 30

B. ADVANTAGES OF THE DATALOGGER .. 30

C. USER's MANUAL .. 31

VI. CONCLUSIONS AND RECOMMENDATIONS... 32

A. CONCLUSIONS ... 32

B. RECOMMENDED FOLLOW-ON WORK ... 32

APPENDIX--I GPS Trimble-4000S ... 34

APPENDIX--il Predefined PACKAGE BIT.. 37

APPENDIX--rnI SAMPLE DATA .. 38

APPENDIX--IV Ada Program Examples ... 43

APPENDIX-V: USER's MANUAL (Operations and Responses) 51

APPENDIX--VI: TEXT NOTES FROM GRADY BOOCH.. 54

LIST OF REFERENES ... 56

INITIAL DISTRIBUTION LIST.. 57

Ai

LIST OF FIGURES

FIGURE-i: Basic Physical System ... 5

FIGURE-2: Suitcase Navigation System Context Diagram .. 6

FIGURE-3: Level Zero Data Flow Diagram .. 7

FIGURE-4: Process Nay_Sensor Data ... 8

FIGURE-5: The Environmental I/O Problems ... 9

FIGURE-6: Description of Logger Design .. 13

FIGURE-7: Description of DataLogger Design .. 14

FIGURE-8: Description of DataLogger 1/0 ports .. 15

FIGURE-9: Hardware Structure of DataLogger .. 29

vii

I. INTRODUCTION

A. BACKGROUND

The research interests of the Small Navigation Data Logger System was initially sponsored
by the Pacific Missile Test Center (PMTC), who uses various ships at their site and other locations

around the world. They often need to have the navigation data from the system that the particular
ship uses logged and displayed. This system can be one of many. Accordingly PMTC desires a

small, portable, data logger that will accept the inputs from any of several navigation systems.
It will have to interface with only one system at once. The system should perform the function of

"Accepting the data, logging the data, displaying the data graphically, plotting the data". Real time

navigation will often be done from this system.

There are several systems that either exist or are being proposed to perform functions like
this. Most are expensive, and require large amount of memory. In addition commercial systems do
not provide the source code or other methods for easy upgrades for new systems. Some of the

reasons for the large memory size of these systems is the desire to interface with different electrical

standards. Our Suitcase Navigation System is concerned only with the RS-232 electrical stan-

dardinterface.

B. PURPOSE OF THIS THESIS

Te objective of this thesis is to provide a generic system, based on the Ada language, to

create an interface to the Suitcase Navigation System, which accepts positional data from a class

of Global Positioning Systems (GPS) and distributes this information to a variety users including
the LCCDS's navigational subsystem. The central focus of the thesis is to design, implement, and

experience to gather performance data of the Navigational DataLogger System.

C. THESIS ORGANIZATION

Chapter II gives the Suitcase Navigation System overview. In order to assist the reader

, n~ wa mnmnnnmua mm u l ululnllunn mm NNN ' IT H m,,- 1

in understanding the basic features of SNS, which follows the Yourdon's Modem Structured

Analysis 1989 (Reference-2), to present a software develop method from the Requirements

Analysis point of view. The Suitcase Navigation System's Context Diagram and level-O Data Flow

Diagram is presented in this chapter.

Chapter III, the object-oriented method suggested in Grady Booch's Software Engine-

ering with Ada (Reference-3), is applied to the design of Navigation DataLogger. In order to

describe to the reader parts of the system function, the chapter defines the problem, identifies the

objects, identifies the operations, establishes the communication, and establishes the interface.

Chapter IV describes the implementation of the Navigation DataLogger, the System-

Sensor Interface, the SensorData Handler, The System Data Management, and program coding.

Chapter V describes the performance of the DataLogger. We start from a required pro-

gram structure, which described hardware structure and software structure. The simulation in

our lab, provides experimental results for Hardware connection, Transmission Rate, and Conver-

sion accuracy, we describe the working process, and also point out the effects and contacts. Then

from the user's point of view we describes how to use the DataLogger.

Chapter VI is the final chapter, which includes the Conclusions and Recommendations of

some suggestions for future research and follow-on work.

Appendix. 1: The specification of the RS-232 connections between external Navigation

Sensor and the working system.

Appendix.2: Predefined Ada package Bit specification.

Appendix.3: Sample data formats from external navigation sensor.

Appendix.4: Sample Ada programs for the project development.

Appendix.5: Navigation DataLogger User's manual.

Appendix.6: Text Notes from Grady Booch

2

II. SUITCASE NAVIGATION SYSTEM OVERVIEW

A. INITIAL PROBLEM STATEMENT

1. The Suitcase Navigation System Project

There is a need for an integrated navigation system for use with various ships or aircraft

of opportunity. System must be self-contained, lightweight, portable, and multi-purpose. Systems

should use off-the shelf components, to facilitate hardware replacement and minimize downtime.

System would be utilized for the following tasks:

"Integrated Navigation, Tracking, and Positioning. Test and Evaluation of Equipment,

System, and Weapons. Fleet Training Umpire. Range Surveying."

System must be able to accept input data from various navigational sources. It will provide real-

time processing of data and in the absence of data will use dead reckoning points derived from a

Kalman Filter. It will allow output data to be displayed on CRT, and XY plotter.

2. The Physical System

1) Basic System: Computer (Laptop preferred), Keyboard, and CRT.

2) Accessories: Printer, UHF Modem, Remote CRT, and XY plotter.

3) Allowance for selection from the following input systems (initially desired are):

- TI 4100 GPS Receiver

- Trimble GPS Receiver

- EEC GPS Receiver

- Motorola GPS Receiver

- Magellan GPS Receiver

- Rockwell-Collins (JPO) GPS Receiver

- Mini-ranger Radio Positioning System

4) Allowance for selection from the following output systems

- Data recorded by:

a. Disk, floppy or hard drive.

b. Tape.

c. Cassette.

di. P-inter.

- Visually displayed by:

a. CRT.

b. Printer.

c. XY Plotter.

d. Remote CRTs connected via UHF modem (for use on flight station, bridge, or deck).

B. SYSTEM DESCR)PTION

System is turned on. Software must handle initial setup accessing I/O ports, through the
hardware bus. CRT displays setup menu, requires keyboard entries. Requests the following.

- Mode type: provide external setup on navigation input systems.

- Type of input: primary, secondary, and tertiary navigation source and its format.

- XY plotter: plot functions.

- Navigational data recording: utilization, location, and rate.

- Printer recording: utilization, format, and rate.

- Remote CRT: utilization and setup.

- Verification of entries: user friendly desigi.

Figure-I Basic Physical System of Suitcase Navigation System illustrates the example of the Suit-

case Navigation System that PMTC proposed to the Naval Postgraduate School for the purpose of:

"To provide PACMISRANFACI PACMISTESTCEN with an integrated navigation system

capability. This capability would provide to range users, a means to pre-plan range rperations and

to accurately navigate, position, and collect operational data. In addition, this capability may be

the make or break point between a range user using or not using the range."

-- Note: A work statement from PMTC.

4

SATNAI
ANTENNA

NAV_INPUT
I' PLO

NAV C R

GPS

REMOTE CRT RF MODEM PRINTER

Figure- 1: Basic Physical System

C. SYSTEM OPERATIONS

1. CRT display

Two-thirds of screen for graphic display and switchable provides: "duplicate of XY

plotter, Positional Bulls-eye-Range and Bearing, Left/Right of Track-Waypoints". Remainder

of screen provides "Data and Time, Latitude and Longitude, Range and Bearing for Bulls-eye and

Waypoints, Help notations for program change toggles, Edge of plot sheet warning".

-- Statements from "World Range Suitcase Navigation Feasibility Study". (Reference-4)

2. Plotter

Responds as prompted from setup and/or program change toggles.

3. Data Logger

5

Responds as prompted from setup and/or program change toggles.

4. Remote CRT

Displays as prompted from setup and/or program change toggles.

5. Keyboard

Inputs system setup and provides program change toggles.

D. REQUIREMENTS ANALYSIS

1. The Statement of Purpose

The purpose of the Suitcase Navigation System (SNS) is to generate a general purpose

Ada language based system, which takes inputs from different Global 7ositioning Systems, and

record position data generated by any of the positioning system via an RS-232 interface. The gen-

eral purpose software would be flexible and programmable by selecting components off the menu

presented to the screen of the lop-top Any graphics capability of the laptop could be used to

present the geographic position of the platform in an appropriate geometric design. (Reference-4)

2. Suitcase Navigation System Context Diagram

Nay Sensor Type & Setup Nvgto

Memo TetNaviaiato

User I ey~oSuitcanso

Logged Data

Figure-2: Suitcase Navigation System Context Diagram

6

3. Suitcase Navigation System Level-O DED

NaySensorType & wSno
NayDataFormat aSe

Seo eyDa aa DipayTp afMiso

My emoD t CroesIntilssTr ck_ rr r oc s Cure t_ ayData

Brin serDao NeSa eon so Dtaet_ xW

WaypoiTimey toNextW ata

Fiur-: utcsLNvgto Systems~a Data-OD

7retNvD

III. DATALOGGER DESIGN

A. INTRODUCTION

The system is designed for the Suitcase Navigation System project. To implement Global

Positioning System (GPS) data as the resource to satisfy the navigation problem needs, and using

the highly accurate position to develop the whole system as a reliable console by means of Man

Machine Interface. This thesis is look into the first bubble of the level-0 Data Flow Diagram,

which interface the external nay_sensor, and process the nay_sensor data. Figure-4 illustrates

the design.

SNay Sensor Type Nay Sensor

Sensor Data Format v_Sensor
PData

Current Nav Data Previous Nav Data

Figure-4: Process Nay_Sensor Data

. 8

B. DEFINE THE PROBLEM

The primary concern is the monitoring or control of real-time processes. Figure-5. The

environmental I/O problem (Process Data Received From Sensor), illustrates the problem space.

Our problem does involve several navigation sensors in various modes of operation. These sensors

continuously sample the ambient data and transmit in several different rates. If a particular set of

sensor data which is needed by the user, the DataLogger shall be able to get and print it. The

system also displays the data while it is logging or printing. We are presently using Trimble-4000s

GPS as the external Nay_sensor, and a laptop computer as the hardware system.

To process nay_sensor data, the system need not only log the data, but allow the user to

interact with the system by exception handling design (Hot-Key). Periodically, our system must

be able to get the current datastring of navigation sensor to a permanent log. This can be done by

pulling data out from the buffer file and print it. Printers have the nasty habit of running out of

paper at the worst possible time; therefore, we have judged the printer to be the least reliable device

in our system.

Figure-5: Environmental I/O problems DaaLge

C. IDENTIFY THE OBJECTS

- External Nay_Sensors (GPS).

- CRT and Printer.

- DataLogger.

- User_Commands.

The external NavSensors defines a generic class of objects, whereas our system target

is an instance of an object using the Trimble-4000 S GPS.
The CRT and Printer defines another set of external devices which act as a servers

in the system.
Data logger defines the flow of data transfer, which identified the legal character from

line ports, converts it and stores it. The data is logging to rawdata file, buffer file and display.

A user exists outside the design application, but the user can interact with the system via

commands. A software development of hot key design will be implement in the future.

D. IDENTIFY THE OPERATIONS

To consider the behavior of each object, we shall specify the operations and identify the

concurrence. According to Booch's concurrent real-time processing, we shall abstract the External

NavSensor as a concurrent entity. It's primary role is to continuously monitor the input data.

CRT and Printer as server of Data_Logger, and DataLogger as the actor of the software system.

From the constrains of software support in Suitcase Navigation System, which assigned Laptop as

the working system and DOS as the operating system, our project starts from the basic process

operations that the DOS can support and upgrade in the future.

The Operations of the Navigation DataLogger is organized as follows:

1. Operation 1: INITIALIZATION--Set up external Nay_sensors connection
*. Assign communication port: COMI or COM2;

-- GET(NUM): Select proper comport and assign variable value;

*.Assign transmission rate: BaudRate

-- GET(CH): Match the initial selection;

-- OUTPORT (P1, 128): Access baud rate divisor;

-- GET(SELECTION): Setup the proper rate;

10

-- OUTPORT (P2, SYSTEM.BYTE(NUMBER)): Put LSB on 3f8 or 2f8;

-- OUTPORT (P3, 00): Put MSB on 3f9 or 2f9;

-- OUTPORT (P1, 03): Set parity, stop bit as (8--NONE--1);

-- OUTPORT (P4,03): Set moden control register,

-- OUTPORT (P3, 00): Disable line control register,

-- RATES (P1, P2, P3, P4): Setup the transmission rate;

2. Operation 2: External NavSensor operation setup

*. Port 1/0: Set up the connecting ports to transmit sensordata.

*. Value: Type of the measurement value(position data or measurement data).

*. SendRate: How often the data flow is (set up the baud rate).

-- Note: operation 2 is operated externally by user

3. Operation 3: LOGGER--Log and Convert

*. Operations a logger to process GETCHAR and logging

-- OPEN (FILE, OUT_FILE, NAME=>"POS.OUT"): Open buffer file to write;

-- GETCHAR: Function to get and return the value;

-- PUT (A_CHAR): put data on the screen;

-- PUT (THEFILE, ACHAR): Put (while convert) data in the file;

-- PUT (FILE, ACHAR): Put (while convert) data in to buffer file;

-- CLOSE (FILE): Close buffer file;

-- CLOSE (THEFILE): Close the raw data file;

*. A function GETCHAR: Get value from the assigned sensor in generic type

(SYSEM.BYTE) then convert the value into any desire format in the operation.

-- INPORT (PORT 1,LINE): Check 3fd or 2fd for data available;

-- TSTBIT (INTEGER(LINE), 0): Find out the status;

-- CLRBIT (LINEINT, 0): Reset the test bit;

-- OUTPORT (PORTl, SYSTEM.BYTE(LINEJINT)): Assign value to 3fd or 2fd;

-- Return VALUE of CHARACTER'VAL(DATA);

4. Operation 4: DATALOGGER-- the main program unit

*. Logging the imported sensordata

-- INITIAL (PORTI, PORT2): Initialization of the system communication;

-- BAUDRATE: Setup the transmission rate;

1I

- OPEN (THE_7 LLE, INFILE, NAME=>'"POS.DAT'): Open file to store data;

-- KEYPRESS (CURRENT_INPUT): Hot key control function;

-- POSITIONNOW: Display and print out the hard copy;

-- LOGGER (PORTI, PORT2): Log sensor data from the setup comport;

- CLOSE (THE_FILE): Close the raw data file;

-- EXCEPTION: Handle the exception commands;

5. Operation 5: POSITIONNOW--Display current data string

*. Operations a display of data string as user desired.

-- OPEN (FILE, IN_FILE, NAME=> "POS.OUT'): Open buffer file to read;

-- GET (FILE, ITEM): Get from buffer file;

-- PUT (ITEM): Put the data (ITEM) on the screen;

-- CLOSE (FILE): Ready for other operation;

-- Note: We characterized DataLogger as a Transducer Task for the whole Suitcase Navigation

System. By the definition of Booch's tasks, A transducer is a task that both calls entries of other

tasks and also provides a service to other units (such as process & display status in Suitcase Nav-

igation System, or Integration System in LCCDS).

-- Note: The first iteration of this project does not use tasking for program coding, but the

following updates may want to use tasking, because of more concurrent operations

E. ESTABLISH THE COMMUNICATION

To establish the communication we must consider the relationship among objects, now

that we have identified the operations of each object in our system, we may start from the external

Navigation sensor. The operation of the external navigation sensor is completely isolated from any

other object. But the sensor's data is coupled to other operations. We call the data SYSTEM.

BYTE, and the function to get the data GETCHAR:

GET_CHAR must be able to see SYSTEM.BYTE;

GETCHAR is a function type of subprogram, it checks the line register of the COM_

PORT, and looking for the legal byte "[", which was assigned by the user and can be changed. The

12

return value of GET_CHAR is converted to CHARACTER, and distributed to different files

and the display. A main subprogram that serves as the root of the system is required by Ada. We

shall call this subprogram LOGGER, and it will contain the function (GET_CHAR). Additionally,

this unit will be responsible for process & status display in the future. As a result:

LOGGER must see GETCHAR and POSITIONNOW;

LOGGER
External NavSensor

[GET-CHAR

DataBaseF
Data Displays •

Ralw-data

L . " Current Data)I

Figure-6: Description of Logger Design

Figure-6: illustrates these relationships. DATA_LOGGER is the main program, we will see four

sub-units, which describes the whole operation:

-- INITIALIZATION: Subprogram process commands to handle user initialization.

-- BAUDRATE: Subprogram process commands to establish proper communication.

-- POSITIONNOW: Subprogram to support the USERCOMMANDS.

-- LOGGER: Subprogram of periodic logging of sensor readings.

13

HirrLIALLZATION

DATA LOGGER

LOGGER

Figure-7: Description of Dataj.Logger Design

Figure-7: illustrates this level of the design. We also learned that at the interface of I/O ports the

abstraction falls at a lower level in our design, and this ports are visible here only to the bodies

of DATALOGGER. Figure-8: illustrates this level of the design.

F. ESTABLISH THE INTERFACE

The interface that we are concerned with here is mainly between Navigation sensor,

Data_Logger, Printer, and User_Commands. In this thesis we are focused in the Navigation sensor

interface through RS-232 and I/O ports interface from low-level to high-level language.

In early stage of this project, our lab has set up two PC connected by RS-232 as simulation

system design for Suitcase Navigation System. Chapter V will present the simulation and

14

Appendix.1 introduces briefly the RS-232 interface for GPS (Trimble-4000). From the soft-

ware designer's point of view, I/O ports interface (from lowlevel to high-level) to Ada is another

main concern in this thesis. We have learned that Ada is capable to handle I/O in many different

ways. In this project we use predefined package BIT (appendix.2), as port I/O interface support

because package Bit can provide more control to the user. We will have more discussion in the

next chapter about Data_Logger implementation.

GPS DATALOGGER
RS-232

External
NaySensor

CRT ,
DISPLAY PRINTER 1

Figure-8: Description of DataLogger I/O ports

15

IV. DATALOGGER IMPLEMENTATION

A. SYSTEM-SENSOR INTERFACING

To set up the interface between system and external sensor, we need to initialize the COM-

PORT which is physically connected to the sensor. According to the pre-defined package BIT

(Appendix.2), we have the procedures of SETBT CLRBIT which can set the bit number into the

specified port and clear it when done, the function TSTBIT with in out VALUE in type INTEGER

and assigned BIT number in type of BIT_NUM, which is subtype of INTEGER and range 0.. 15.

Also we have the capabilities to handle the VALUE in out as user assigned PORTNUM then put

and get the VALUE in type SYSTEM.BYTE by using procedures INPORT and OUTPORT.

This is the design that we assign the COM_PORT:

Code-i: Initialization

* First of all we want to set up the communication through the standard RS-232 connections,

a procedure named INITIAL with two variables of type INTEGER, programmed to make tht

selection of COM_PORT (3f8 or 2f8), and set the status register ready (3fd or 2fd).
* Needs to be done every time when restart the system.

-- A procedure to start the program

procedure INITIAL(PORTl, PORT2: out INTEGER) is

NUM: INTEGER;

begin

GET(NUM); -- to set up comport number here

case NUM is

when I =>

PORT1 := 1021;

PORT2:= 1016;

PUTLINE("You've set PortI = 1021, and Port2 = 1016");

when 2 =>

16

PORT1:= 765;

PORT2:= 760;

PUTLINE("You've set Port 1 = 765, and Port2 = 760");

when others =>

PUTLINE("Wrong key! Sorry, you should be more careful ");

end case; end INITIAL;

Code-2: Setup the Baud-Rate

* Secondly we setup the BAUDRATE to complete the initialization of the system connectior

and communication transmit through RS-232.

-- A procedure to set the system baudrate

procedure BAUD_RATE is

CH: INTEGER;

procedure RATES(Pl, P2, P3, P4: in INTEGER) is

NUMBER, SELECTION: INTEGER;

begin

OUTPORT (P1, 128); -- access Baud-Rate- Divisor

GET(SELECTION);

case SELECTION is

when 1 =>

NUMBER:= 96; -- Baud-Rate = 1200

when 2 =>

NUMBER:= 48; -- Baud-Rate = 2400

when 3 =>

NUMBER:= 24; -- Baud-Rate = 4800

when 4 =>

NUMBER:= 12; -- Baud-Rate = 9600

end case;

OUTPORT (P2, SYSTEM.BYTE(NUMBER)); -- convert the number into system.byte

17

-- put LSB on 3f8 or 2f8 (corn 1 or com2)set Baud

OUTPORT (P3, 00); -- put MSB on 3f9 or 2f9

OUTPORT (P1, 03); -- no p one s 8 bit

OUTPORT (P4,03); -- set modem control register

OUTPORT (P3, 00); -- interrupt control register (disable)

end RATES;

begin

GET(CH);

case CH is

when I =>
RATES(1019, 1016, 1017, 1020); -- call .ibprograrn RATES and passed the var value

when 2 =>

RATES(763, 760, 761, 764);

end case;

end BAUDRATE;

External sensor operation requires certain levels of set up process operate by user. As a

good example, Appendix. 1 presents a brief introduction of Trimble 4000 GPS using RS-232 inter-

face to an external compute,. Operation requires three basic things; such as Port 1/0 match, type of

VALUE declaration, and transmission rate set up. One way or the other, the practical cable
connection and interfacing set up procedures should be carefully done step by step and may be

done by using a reliable little test program.

B. SENSOR DATA HANDLER

Before we receive sensor data from an external sensor, the system shall be ready for data
input. Appendix.3 provides the formats of the sensor data, which we are interested in using in

this project. In Ada, we like to use file as a main memories unit to help user handle data in and out.

To make room and assign an address to an incoming datastring, we could simply use:

OPEN (TYPE => FILETYPE, MODE => OUT_FILE, NAME =>: "POS.DAT");

18

This is to open a file as a text FILE-TYPE, with mode as OUT_FILE (WRITE) and named

POS.DAT. The system is then ready for PUT or WRITE some data into the file. While data is

coming from the COMPORT, where it is going to rest, what is the format of data, and how can

we handle it is becoming our next concern.

Since we decided to use predefined package BIT, we know we are getting data in BYTEs,

and convert it into any type we need in the whole program. The main subprogram LOGGER that

serves as the root of the system is programmed in this manner. It checks the line register for legal

(defined by user) character, then log in the desired one. By the time when user monitor the input

data on the screen, it stored into assigned file as well (Rawdata). On the other hand, our system

keep the updated datastring in another buffer file called POS.OUT which store only the new

updated position data, and ready to be used any time when the complete set of string is received.

Code-3: A main subprogram

* A main subprogram which contains the function GET_CHAR to get data from external

navigation sensor and return CHARACTER data, then distributes data to datafile, buffer_

file, and display.

-- A procedure to logging data

procedure LOGGER (PORTI, PORT2: in INTEGER) is

-- portl = 1021 1765, port2 = 1016 1760

A_CHAR: CHARACTER;

VALUE: SYSTEM.BYTE;

-- A function to get data from GPS sensor

function GETCHAR return CHARACTER is

LINE, DATA: SYSTEM.BYTE;

LINEINT: INTEGER;

begin

loop

INPORT (PORT], LINE); -- check 3fd input data is available

exit when TSTBIT(INTEGER(LINE), 0); -- loop until it's available

19

if KEYPRESS then-- exit the loop

raise ABORT_REQUEST;

end if;

end loop;

LINE INT:= INTEGER(LINE); -- convert LINE into integer

CLRBIT(LINEINT, 0); -- clear TESTBIT

INPORT (PORT2, DATA); -- read data from 3f8

OUTPORT(PORTI, SYSTEM.BYTE(LINELINT)); -- put value back to 3fd
return CHARACTER'VAL(DATA);-- return value in character

end GETCHAR;

begin

loop-- wait for the first legal char

OPEN (FILE, OUTFILE, NAME => "POS.OUT"); -- open a temp out file

while GETCHAR /='[' loop-- process each message received

null; -- and wait for start character

end loop;

PUT ('['); -- put start char on the screen

PUT (THEFILE,'['); -- put start char to file

PUT (FILE,'['); -- put start character to temp file

loop

A_CHAR:= GET_CHAR; -- get and put the message

PUT (ACHAR); -- put data on the screen

PUT (THE-FILE, A_CHAR); -- and to the file

PUT (FILE, ACHAR); -- and to the temp file

exit when A_CHAR =']'; -- line 185

end loop; -- get another set of data

CLOSE(FILE); -- close temp file here

exit when KEYPRESS; -- exit loop

end loop;

end LOGGER;

20

C. SYSTEM DATA MANAGEMENT

The system is getting data from an external sensor and it is coming in like a flow. Procedure

LOGGER has the control of coming data flow by using line register checking, and so we can keep

the data as clear as we want. It is the problem that how can we keep and get a real_time data from

the system. Procedure POSITIONNOW is presenting a simple way to solve this problem, by

using a separate procedure we make the buffer file POS.OUT play an independent work while

system running and it provides realtime data. This design is very useful for Suitcase Navigation

System at the present time, when the user needs the position in a good accuracy. It is also good for

future system implementation, which needs a whole set of independent position datastring.

Code-4: Display current position data

* To responds the user's need in between operation, the system can be interrupted by a single

user command, to pull out the current position data and be able to print.

-- A procedure to print the desire data-string

procedure POSITIONNOW is

ITEM: CHARACTER;

FILE: FILETYPE;

begin

OPEN (FILE, INFILE, NAME => "POS.OUT"); -- open the update file

while not END_OFFILE(FILE) loop

GET(FILE, ITEM); -- get the data

PUT(ITEM); -- put it on the screen

end loop;

CLOSE(FILE);
end POSITIONNOW;

21

D. PROGRAM CODING

We programmed the system DATALOGGER for PC or LapTop which is supported by

DOS operating system. Program coding was done in IntegrAda and will be refined later, when

the project move up to automation boundary, and multi-tasking. Since this is the first software

program for Suitcase Navigation System, our main effort is to make the basic function work.

The goal is clear, the structure of the whole system is firm, the program coding is as good as

any other Ada program, which is as follows:

-- UNITNAME I DATALOGGER.A

-- UNITDESCRIPTION I This program is designed for Suitcase Navigation

-- I data logger which logs data from GPS sensor store,

-- I puts it into a file and prints the data string by the

-- I user desire command

-- INPUTS I GPS input raw data

-- OUTPUTS I data record

-- CREATED I12 May 1991

-- AUTHOR I CDR. Chin, Yu-Chi

-- ADVISOR I DR. Uno R. Kodres

with BIT, KEYBOARD, TEXT_10, RTEXT_10;

use BIT, KEYBOARD, TEXTIO, RTEXT_1O;

procedure DATAL)GGER is

-- program specification declaration to expose the parameters in out

procedure INITIAL(PORTI, PORT2: out INTEGER);

procedure LOGGER (PORTI, PORT2: in INTEGER);

package INTEGERINOUT is new INTEGERIO(INTEGER);

use INTEGERINOUT;

-- global variable declaration

FILE, THE_FILE : FILETYPE;

PORTI, PORT2, ROCK : INTEGER;

ABORTREQUEST : EXCEPTION;

22

-- A procedure to start the program

procedure INITIAL(PORTI,PORT2 : out INTEGER) is

NUM: INTEGER;

begin

PUTJINE(" AUTHOR : CDR. CHIN, YU-CHI R.O.C.N ");

NEWLINE;

PUTLINE(" ADVISOR : DR. UNO R. KODRES NPGS U.S.A. ");

NEW-LINE;

PUTLINE(" DATE :16 MAY 1991 ");

delay 5.0;

NEWLINE(24);

PUTLINE("A brief guide to use this program :");

NEWLINE;

PUT_LINE("l. Select COMPORT & Make sure your system BaudRate is match");

NEWLINE;

PUTLINE("2. Run the procedure DATALOGGER at proper COMPORT");

NEWLINE;

PUTLINE("3. Use Space-Bar and then PrtSc to get updated datastring");

NEWLINE;

PUTLINE("4. Use (q) or (Q) to exit the program");

NEWLINE;

delay 5.0;

PUT_LINE("Give the COMPORT number in (1) or (2)");

GET(NUM); -- to set up comport number here

case NUM is

when 1 =>

PORTI := 1021; -- line register 3fd

PORT2 := 1016; -- comport number 3f8

PUTLINE("You've set Portl = 1021, and Port2 = 1016");

when 2 =>

PORTI := 765; -- line register 2fd

PORT2 := 760; -- comrport number 2f8

PUTLINE("You've set Portl = 765, and Port2 = 760");

when others =>

23

PUTLINE(" Wrong key !! Sorry, you should be more careful ");

end case;

end INITIAL;

- A procedure to set the system baud_rate

procedure BAUDRATE is

CH : INTEGER;

procedure RATES(P1, P2, P3, P4: in INTEGER) is

NUMBER,

SELECTION : INTEGER;

begin

OUTPORT (P1, 128); -- access Baud-Rate- Divisor

PUTLINE ("SET THE SYSTEM BAUD-RATE AS YOUR DESIRE");

PUTLINE (" --- SELECION IS ---

PUTLINE(" 1 = 1200 ");

PUTLINE(C 2 = 2400 ");

PUTLINE(" 3 = 4800 ");

PUTLINE (" 4 = 9600 ");

NEWLINE;

GET(SELECTION);

case SELECTION is

when I =>

NUMBER := 96; -- Baud-Rate = 1200

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SET TO 1200 NOW");

when 2 =>

NUMBER := 48; -- Baud-Rate = 2400

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SET TO 2400 NOW");

when 3 =>

NUMBER := 24; -- Baud-Rate = 4800

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SET TO 4800 NOW");

when 4 =>

NUMBER := 12; -- Baud-Rate = 9600

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SET TO 9600 NOW");

when others =>

24

PUT_LINE (" WRONG SELECTION !! TRY AGAIN!! ");

end case;

OUTPORT (P2,SYSTEM.BYTE(NUMBER)); -- convert the number into system.byte

-- put LSB on 3f8 or 2f8 (cor or com2)set Baud

OUTPORT (P3, 00); -- put MSB on 3f9 or 2f9
OUTPORT (P1, 03); -- 8 bit, no parity, one stop (8--NONE--)

OUTPORT (P4, 03); -- set modem control register

OUTPORT (P3, 00); -- interrupt control register (disable)

NEWLINE;

PUTLINE ("BAUD-RATE SETTING IS DONE!! ");

end RATES;

begin

NEWLINE(5);

PUTLINE("Now The program is design to setup the system BAUDRATE");

NEWLINE;

PUTLINE("Make your choose for COMI or COM2: use -1- or -2-");

GET(CH);

case CH is -- set the value to ports

when 1 =>

RATES(1019, 1016, 1017, 1020); -- set baudrate and parity

PUT_LINE("FOR COM1 SETTING"); -- to corn_port # 1

when 2 =>

RATES(763, 760, 761, 764); -- set baud_rate and parity

PUTLINE("FOR COM2 SETTING"); -- to corn_port # 2

when others => -- line 142

PUTLINE("WRONG KEY !! TRY AGAIN !!!");

end case;

end BAUDRATE;

-- A procedure to print the desire datastring

procedure POSITIONNOW is

ITEM : CHARACTER;

25

FILE : FILE_TYPE;

begin

NEWPAGE;

NEW_LINE(5);

PUTLINE(" The current datastring is:

NEWLINE;

OPEN (FILE, INFILE, NAME => "POS.OUT"); -- open the update buffer file

while not END_OFFILE(FILE) loop -- loop to get the whole string

GET(FILE, ITEM); -- get the current datastring

PUT(ITEM); -- put it on the screen

end loop; -- out loop when done

NEWLINE(10);

CLOSE(FILE); -- close file back to survey

end POSMONNOW;

-- A procedure to log data from external nay_sensor

procedure LOGGER (PORTI, PORT2 : in INTEGER) is

-- portl = 10211765, port2 = 10161760

A_CHAR : CHARACTER;

VALUE : SYSTEM.BYTE;

-- A function to get data from GPS sensor

function GETCHAR return CHARACTER is

LINE, DATA : SYSTEM.BYTE;

LINEINT : INTEGER;

begin

loop

INPORT (PORT 1, LINE); -- check 3fd or 2fd is available

exit when TSTBIT(INTEGER(LINE), 0); -- loop until it's available

end loop; -- line 182

LINEINT := INTEGER(LINE); -- convert LINE into integer

CLRBIT(LINEINT, 0); -- clear TESTBIT

26

INPORT (PORT2, DATA); -- read data from 3f8 or 2f8
OUTPORT(PORT1, SYSTEM.BYTE(LINEINT)); -- put value back to 3fd or 2fd

if INTEGER(DATA) > 127 then -- a test loop for bad data

DATA:= 42; -- if not a character use '*'

end if;

return CHARACTER'VAL(DATA);

end GETCHAR;

begin

PUTLINE("Waiting for the first legal character");

loop -- wait for the first legal char

OPEN (FILE, OUT-FILE, NAME => "POS.OUT"); -- open a temp out file

while GETCHAR /= '[' loop -- process each message received

null; -- and wait for start character

end loop;

PUT ('['); -- put start char on the screen

PUT (THEFILE, '['); -- put start char to file

PUT (FILE, '['); -- put start cgar to temp file

loop --

A_CHAR:= GETCHAR; -- get and put the message

PUT (A_CHAR); -- put data on the screen

PUT (THE-FILE, ACHAR); -- and to the file

PUT (FILE, ACHAR); -- and to the temp file

exit when A CHAR = ']';

end loop; -- get another set of data

CLOSE(FILE); -- close temp file here

exit when KEYPRESS; -- exit loop

end loop;

end LOGGER;

-- main program starts here

begin

INITIAL (PORT1, PORT2); -- a brief program instruction

BAUDRATE; -- program to set system BaudRate

OPEN (THE-FILE, OUTFILE, NAME => "POS.DAT");-- make file pos.dat availabe

27

loop
if KEYPRESS(CURRENTINPUT) then -- press Space..Bar to interrupt and

NEWLINE; -- ready to print the screen

PUTLINE("New data~string is as follow:");

NEWLINE;

ROCK:= KEYVALUE; -- assign keypress to variable

if ROCK =32 then -- if SpaceBar s true then

POSmTON-NOW; -- bring the data to the screen

elsif ROCK = 81 or ROCK = 113 then -- press (q) to exit the program

raise ABORL REQIJEST; -- raise exception

end if;,- else program will keep running

end if; -- no interruption
LOGGER(PORT1, PORT2); -- program to log sensor data

end loop;

exception

when ABORT-REQUEST => -- exit the program

CLOSE (rHE-FILE);
PUT-LINE ("END OF PROGRAM DATALOGGER.A");

end DATALOGGER;

28

V. DESCRIPTION OF THE DATALOGGER

A. THE REQUIRED PROGRAM STRUCTURE

1. Hardware Structure

The Navigation DataLogger System is structured by 4 parts, which includes Antenna,

GPS, Computer (PC or LapTop), and Printer. Since the external navigation sensor will be a generic

positioning device, we will use the name GPS as generic Global Positioning System. For this pro-

gram, we use Trimble-4000S GPS as the target NavSensors, because it is available at school.

Before we have the real GPS, our lab has set up two 286-Zenith PC connected by RS-232 cable to

simulate the communications. By transmit data from computer A and received by computer B,

we have learned that the wire connection through RS-232 will cause no problems for the project.

By the time we got the GPS (Trimble-4000), the system is set up similar as Figure-9, and the soft-

ware was written to be tested.

Antenna DATA LOGGER SOFTWARE SYSTEM

1 CD
~Printer

Laptop

Figure-9: Hardware Structure of Data Logger

29

2. Software Structure

Ada is the only choice of software structure. As we have mentioned, Ada is well designed

for the applications via concurrently, real-time control, exception handling, and unique input and

output. But as well as the program needs, Ada provides low-level programming also. Because of

the hardware constrains for the type of computer will be a LapTop or a 286 PC, the software is

constrained to DOS supported program by definition. We went through the applications of Ada

input/output and learned that programming for input/output (I/O) has always been like going to

the dentist for a toothache, it's some-thing that language designers have to do, but they tend to put

it off in the hope that it might go away.

Ada does not treat I/O as a thorn in the side of the language. Infact, with the extensibility

provided by Ada's packaging mechanism and generic facilities, Ada does not have to provide any

special language features to accommodate I/O. The user can build his own 1/O routines for com-

munication with unique devices. Furthermore, without adding any new language constructs, the

user can use any predefined units for I/O of common data types, such as characters, integers,

and real numbers, which can be selected as needed.

Here, we use TEXTJO to handle the generic textjfile I/O, which can support the data

storage and transfer at the same time while the input data is presented on the screen it outputs to an

existing file and a designed buffer file which stored the updated datastring and can be pull out by

Usercommands. We also use another predefined package BIT, to handle the port I/O. This

package supports the capabilities of checking the status of assigned port, and be able to put and

get I/O values from the ports, which gives the user a little bit more control over the external com-

munication devices.

B. ADVANTAGES OF THE DATALOGGER

The Navigation DataLogger System was the first Ada program of the Suitcase Navi-

gation System. It satisfied the needs of SNS project requirement to log the positioning data in the

logger, and also provides the screen display for easy reading, but most importantly it provides a

single set of current position data-string, which is the real-time position that the operation

30

required. Any time when you need to mark the position or you need a fix on the open sea, the

SpaceBar is the user command to bring the current position data~string to the screen. To get a

hardcopy by using print screen won't disturb the program processing the NavSensors, but

provides the scientists an clear data record, and a reliable global position.

C. USER's MANUAL

The instruction of how to use the Navigation DataLogger System has been written as

an operation process and responses in Appendix.5. Beyond that, user should be able to set up the
external Nay_Sensor's function properly and capable to make the connection to the control system

(computer) through RS-232. When the operation is on, user should know the basic serial COM_
PORT's function and how to adjust the transmission rate (BaudRate). After the hardware set up,

the user should carefully start the initialization and run the program under the brief guide.

Since this program is directed to Trimble-4000s GPS, the logical position data~string was

bounded by the special characters '[' and']'. It was programmed inside the procedure LOGGER

and was very easy to redefined by change the boundary character and it's decimal representations.
To avoid the programming language constrains, user can select the separated function program

listed in Appendix.4 and collected the data as well.

31

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The Suitcase Navigation System is designed for the people who do not know much about

Navigation, but want to work in the environment which needs to collect this information. The

project uses GPS as a fundamental sensor, to provide the crucial data. This thesis is an effort in

developing a Navigation Data-Logger software system, that can satisfy the needs to procss

navigation sensor data.

In order to achieve this basic requirement, we start from data format analysis and single

byte transmission, finally we programmed the Navigation DataLogger software system. As we

may recall from chapter-4, the performance of the DataLogger is demonstrates that it is quite

efficient, mainly for logging messages from GPS and transmitting data to Screen, Rawdata file,

and Buffer file. User can view the data on the screen, store the data in Raw-data file, and get the
hard copy from buffer file. The conclusion arise from our Navigation DataLogger System design

is that Ada is an high level language, but it can be used to handle lowlevel 1/0, and support the

software design in high level programming.

B. RECOMMENDED FOLLOW-ON WORK

As stated in Chapter I, this thesis is directed to the GPS , represented by Trimble-4000

for the Suitcase Navigation System. It is our hope that it can serve as a firm foundation for future

and more enhanced implementations. During the process this thesis was being developed, many

new ideas were brought up. We would like to give some suggestions for future enhancements in

the system.

1) The database of Data-Logger should be the first concern of the program in the near future.

For lon- term survey, we need a database manager support our Nay_Sensors data processor.

32

' w

2) Different external sensors will be the second problem. The system I/O ports concurrence

and real time programming can be support by Ada, a separate package abstraction of these I/O

ports could be a high-level view of physical memory locations.

3) HotKey control, Ada exception handling and low-level features of I/O representation spec-

ification is highly recommended for concurrent real- time processing. As noted in Appendix.6

from Reference-3.

4) Remote control to external navigation sensor is a possible and the software to challenge the

next Ada programmer. The Trimble manual and Appendix.1 explains further how this should be

done.

33

APPENDIX--I GPS Trimble-4000S

Using the RS-232 interface for Trimble 4000.

1. Select proper cables and connectors to connected the GPS and computer.

--Select one of the connectors (ports) and make a connection in the way of Matching Pins.*

-- Note: * In general, the only signals that need to be connected are:

Trimble 4000 Computer Port

Ground ---------- Ground

TXD (Transmit Data) ----- >RXD (Receive Data)

RXD (Receive Data)< ------ TXD (Transmit Data)

2. Turn on the system and wait until its self calibration completed.

-- Reference position needs to load at this moment. when CALIBRATION OK, and then

-- POSITION FIX 3,4, A display shows the GPS is in normal function.

3. Use the I/O key on the control panel to select 1/0 functions.

4. Select SETUP, BAUD, and the PORT you wish to use.

5. Set the DataLogger receving rate match the GPS send rate.

--All Trimble Model 4000 GPS receivers defaults to 9600 Baud, 8-bits, odd parity, and one

--stop bit (8-ODD- I), Data-Logger set up 8-bits none parity, and one stop bit (8-NONE-

1) set your GPS to match.

6. Select the I/O, and PRINT function to get the desire position data.

7. Remote control programming : To interact properly with the specific interface function

desired.*

--Note: * The remote control interface allows an external computer to set the controls on

--GPS receiver and transfer the measurements and calculations to the computer.

8. Interact with a remote computer through a report session. *

--Note: * A description of The Report Session:

34

The Report Session is enabled by sending a special character, ATTENTION (35 D or 23 H).

The ATTENTION command switches the port on which it is received to become the remote con

trol port, and the next byte received will be logged as a command and will trigger a report session

when the system cycle reaches that step. At that time, the command will be echoed. --

-- Report Session loop:

1. Wait for first byte of next command.

2. Echo the command.

3. Read any other bytes of command (no echoing)

4. Execute the command. This may include sending multiple bytes to the computer.
* Note : There can be a significant delay between sending the first command and the echo.

This is especially true if the receiver is making synchronized measurements.

-- Something you have to know about Trimble-4000 remote control commands.

1. All commands start with a single byte that is evenly divisible by three.

2. The only other valid bytes are:

35 d : ATTENTION;

34 d : old-style ATTENTION;

37 d : ACTIVITY REQUEST;

3. Any illegal bytes will cause an abort of the report session.

4. GPS will wait only 30 seconds for a command it will beep and exit the current session if

more time than this elapses.

5. Command Formats:

- [B I Bytes is single eight-bit INTEGER, range 0.. 255;

(e.g. 255 for ON and 0 for OFF)

- [D I BCD" Binary-Coded-Decimal " digit is single byte range 0.. 9;

(e.g. Lat, Long. Hgt in command 51 d are sent as sequences of BCD digits.)

- R] Floating Point Real number. The real # represented is:

[R] = (-l)s x 2 (exp-1023) x 1.mmmm.. mmmm.

(i.e. IEEE 754 standard for long real numbers)

6. Unit of semicircles in use:
I semicircle = 180 degrees = Pi radians.

35

The Lat and Long values output over the remote control port are both sent n semicircles.

The values are sent as 8-byte real numbers using IEEE standard format After converting

to the receiving computer, the value will be in semicircles, range -1.0. +1.0 which means
-180.0. +180.0 degrees.'+' = North & East,'-' = South & West. Another converting

is desirable to include degrees, minutes, and seconds.

An example of semicircle to degrees:

(e.g. Semicircle = -0.6875833333

Degrees = 0.6875833333 * 180.0

= 123.765000 degrees

Minutes = fraction (123.765) * 60

= 0.765 * 60 = 45,9000 minutes

Seconds = fraction (45.9) * 60

= 0.900 * 60 = 54.00 seconds

Thus, (Longitude)

- 0.6875833333 (Semicircles)

= West 123.765000000 deg (decimal degrees)

or = West 123 deg 45.9000 min (degrees an decimal minutes)

or = West 123 deg 45 min 54.00 sec (degrees, minutes, seconds)

36

APPENDIX--H Predefined PACKAGE BIT

with SYSTEM;

use SYSTEM;

package BIT is

subtype BIT_NUM is INTEGER range 0.. 15;

procedure SETBIT(VAL: in out INTEGER; BIT: in BIT_NUM);

procedure CLRBIT(VAL : in out INTEGER; BIT: in BITNUM);

function TSTBIT(VAL: in INTEGER; BIT: in BIT NUM) return BOOLEAN;

function LAND(VAL1, VAL2 : in INTEGER) return INTEGER;

function LOR(VAL1, VAL2 : in INTEGER) return INTEGER;

function LXOR(VAL1, VAL2: in INTEGER) return INTEGER;

function LNOT(VAL: in INTEGER) return INTEGER;

function PEEK (ADDR: in INTEGER) return BYTE;

procedure POKE (ADDR: in INTEGER; VAL: in BYTE);

function PEEK (SEGMNT, OFFSET: in INTEGER) return BYTE;

procedure POKE (SEGMNT, OFFSET: in INTEGER; VAL: in BYTE);

function CODESEG return INTEGER;

function DATASEG return INTEGER;

procedure INPORT (PORTNUM : in INTEGER; VALUE : out BYTE);

procedure OUTPORT (PORTNUM: in INTEGER; VALUE: in BYTE);

end BIT;

37

APPENDIX--rI SAMPLE DATA

Different set of data from GPS and RPS

TRIMBLE 4000 GPS RECEIVER SETUP PARAMETERS MON 098 08-APR-91
21:24:07

GPS WEEK NUMBER: 0587
REFERENCE LATITUDE: 36:35.9000N
REFERENCE LONGITUDE: 121:52.5990W
REFERENCE HEIGHT: -0020.0 meters
FIXED HEIGHT: YES
REFERENCE FREQUENCY: +0.OOOE+00 delta f/f
FIXED FREQ: YES
LATITUDE OFFSET: 00:00.000ON
LONGITUDE OFFSET: 000:00.0000E
HEIGHT OFFSET: +0000.0 meters

MASKS

PDOP MASK: 07.0
ELEVATION MASK: 10 degrees
DATA AGE SINCE DECODE MASK: 03 hours

CALIBRATION DATA

CODE CALIBRATION: +00.01 +00.01 -00.06 -00.04 +00.06 -00.67 -01.77
-00.08 +00.
02 meters
CARRIER PHASE CALIBRATION: +000 +000 +000 +000 +000 +000 +000 +000
+000 mm

CALIBRATION TIME: 0010 secs

SV STATUS

HEALTHY SVS: 02 03 06 11 12 13 14 15 &
16 17 18 19 20 21 23

DISABLED SVS:
IGNORE HEALTH SVS (POSITIONING):
IGNORE HEALTH SVS (SURVEY):
AUTO SV SELECTION: MIN SVS 3, MAX SVS 4
AUTO INITIAL SV SEARCH
ALL-IN-VIEW SOLUTION: ENABLED

38

RS232 PORTS

PORT1: 9600 BAUD 8-ODD--i START CC= 000 000 000 STOP CC= 000

000 000
POSITION, MEASUREMENTS

PORT2: 9600 BAUD 8-ODD--i START CC= 000 000 000 STOP CC= 000

000 000
OFF

POSITION PRINT TIMER: 00 mins
PRINT ID: 00

DATA BASE

ION UPDATE: ENABLED
BUL UPDATE: ENAPLED
DATA UPDATE: ENABLED

RECEIVER OPERATION

DOPPLER AIDING: ON
SYNC: 002.0 secs

OSCILLATOR DAC: ON
SV AVERAGING: 01.0 secs
POSITION AVERAGING: 0001

SOFTWARE

NAVIGATION PROCESSOR SOFTWARE VERSION: 3.24 16-AUG-89

SIGNAL PROCESSOR SOFTWARE VERSION: 3.20 23-MAR-89

39

PART ONE

FROM TRIMBLE 4000S
FUNCTION PRINT MODE POS (position):

WN REF.LAT REF.LON REF.HGT LAT.OFFSET LON.OFFSET
HGT.OFF SV,POSAV
G PDOP EL AGE MIN MAX REF.FRQ
0587 36:35.9000N 121:52.5990W -0020.0 00:00.000ON 000:00.0000E
+0000.0 01.0 000
1 07.0 10 3 4 +0.OOOE+00
ID DAY DOY DATE TIME LATITUDE LONGITUDE HGT PDOP
CLOCK V.VE
L H.VEL HDG FREQ.OFFSET CONT S SVS
[00 MON 098 08-APR-91 21:24:03 36:35.9482N 121:52.5926W -0017 03.8
309263 +000.
03 000.00 000.0 +5.4522E-11 0043 4 18,19,11,2]
(00 WED 059 28-FEB-90 07:08:13 36:18.2773N 121:59.7371W -0035 04.3
687719 +000.01 002.76 173.8 +4.2469E-11 0024 4 11,3,12,19]
[00 WED 059 28-FEB-90 07:08:29 36:18.2653N 121:59.7351W -0035 04.3
687720 -000.00 002.79 169.6 +4.4440E-11 0025 4 11,3,12,193
[00 WED 059 28-FEB-90 07:08:44 36:18.2569N 121:59.7421W -0020 03.2
687785 +000.00 002.78 167.0 +3.2741E-10 0026 3 3,12,19]
[00 WED 059 28-FEB-90 07:08:59 36:18.2455N 121:59.7375W -0020 03.2
687785 +000.00 002.84 160.5 +9.1577E-11 0027 3 3,12,19]
[00 WED 059 28-FEB-90 07:09:32 36:18.2230N 121:59.7229W -0020 03.2
687791 +000.00 002.85 143.9 +3.8273E-11 0001 3 3,12,19]
[00 WED 059 28-FEB-90 07:09:50 36:18.2134N 121:59.7046W -0026 02.2
687757 -000.01 002.75 133.4 +7.8132E-11 0001 4 11,3,12,6,19]
[00 WED 059 28-FEB-90 07:10:05 36:18.2060N 121:59.6937W -0026 02.2
687758 +000.00 002.64 125.3 +7.4215E-11 0002 4 11,3,12,6,19]
[00 WED 059 28-FEB-90 07:10:20 36:18.2004N 121:59.6820W -0026 02.2
687760 +000.02 002.54 116.6 +7.5696E-11 0003 4 11,3,12,6,19]
(00 WED 059 28-FEB-90 07:10:35 36:18.1965N 121:59.6698W -0027 02.2
687761 +000.00 002.45 107.9 +7.5028E-11 0004 4 11,3,12,6,19]
[00 WED 059 28-FEB-90 07:10:50 36:18.1959N 121:59.6600W -0034 03.5
687746 -000.01 002.36 100.2 +7.4971E-11 0005 4 11,3,12,6]
SV EL AZM SN IODC CONT GPS.TIME AVG.LAT AVG.LON AVG.HGT
NO. RMSLAT LON HGT AVGCLK CLK.RATE AVG.FRQ
11 31 037 13 0462 0005 +285056.512 36:18.1959N 121:59.6600W-
0034.6 0001 00.00 00.00 00.00 687746 +0.OOOOE+00 +7.4971E-11 A
03 36 255 16 0391 0139 +285056.512
12 72 278 18 0029 0052 +285056.512

06 09 159 11 0228 0005 +285056.512

40

PART TWO

FROM TRIM~BLE 4000 XS

FUNCTION PRINT MODE MEAS:

[+1.62465152000E+08 +2.97336525754E+05 +4.09017287885E+06 -

5.79796142489E+05 -

5.79951245869E+05 +5.19603100000E+06 +2.08923525974E+07
+2.97319082170E+05 +1.8
0110329726E-01 +0.00000000000E+00 +0.00000000000E+0000900102218]
+1. 624 6515200
OE+08 +3.470368450
75E+04 +4.09173391062E+06 +4.02280631719E+05 +4.02282417503E+05
+5. 18200400000E
+06 +2.06316314375E+07 +3.46966031546E+04 +7.29198695187E-02
+0. 00000 00000OE+00
+0.OOOOOOOOOOOE+00003001020191 (+1.62465152000E+08

+5.47442764476E+04 +4.09390
777905E+06 +6.6662
4958540E+04 +6.66629219876E+04 +1.79614000000E+05
+2.35639205651E+07 +5.4726886
2247E+04 +4.14212197467E-02 +0.OOOOOOOOOOOE+00
+0 . 0000000000OE+000 0200000811](
+2.03328483276E-01 -6.77091561631E-01 -6.56408896315E+00 -

2.70732416499E+06 -4.
35348044922E+06 +3
.78176743118E+06 +2.83064040661E+00 +9.27233423855E+04 -

7.74005685580E-03) [00 M
ON 098 08-APR-91 21:07:53 36:35.9477N 121:52.5885W -0006 02.8
309292 +000.00 00
0.02 267.7 +2.2601E-11 0014 3 18,19,111
[+1.62480256000E+08 +2.80252655781E+03 +4.09016570002E+06 -

5.85057548887E+05 -

5.85212616397E+05 +5.21113400000E+06 +2.08976139552E+07
+2.78805384002E+03 +1.1
0563354440E-01 +0.OOOOOOOOOOOE+00 +0.OOOOOOOOOOOE+0000500102318]
+1.6248025600
OE+08 +3.547620969
67E+04 +4.09173033829E+06 +4.01510749528E+05 +4.01512559628E+05
+5. 19710800000E
+06 +2.06324012107E+07 +3.54664817960E+04 +2.31367014084E-02
+0. OOOOOOOOOOOE+00
+0.OOOOOOOOOOOE+0000100101819] [+1.62480256000E+08

+4.92651948358E+04 +4.09390
054617E+06 +7.2135

41

PART THREE

FROM MINI-RANGER FALCON 484
FUNCTION PRINT POSITION :

05:48:26.4 15 29739.9 1 6 1.0 13 3403.8 1 6 0.9 1
17718.9 1 19

2.8 4 23691.4 1 38 -1.4 608236.3 4073620.7 0.1 F4
0 C 3.6
2.9\TTAG: 380343\ 9\
05:48:28.4 15 29738.9 1 6 1.4 13 3402.5 1 6 1.7 1

17718.9 1 19
3.4 4 23691.6 1 37 -1.1 608237.3 4073621.1 0.2 F4

0 C 3.6
3.6\TTAG: 380367\ 0\
05:48:30.4 15 29737.9 1 6 1.9 13 3400.3 1 6 3.3 1

17718.6 1 19
4.3 4 23691.4 1 38 -0.2 608238.0 4073621.5 0.3 F4

0 C 3.6
4.9\TTAG: 380410\ 0\
05:48:32.4 15 29738.7 1 6 1.4 13 3402.5 1 6 1.8 1

17718.6 1 19
3.6 4 23691.5 1 38 -1.1 608237.7 4073621.8 0.1 F4

0 C 3.6
3.8\TTAG: 380433\ 0\
05:48:34.4 15 29738.3 1 6 1.5 13 3403.0 1 6 1.6 1

17718.4 1 19
3.7 4 23691.7 1 38 -1.5 608237.4 4073621.4 0.0 F4

0 C 3.6
3.9\TTAG: 380457\ 0\
05:48:36.4 15 29739.0 1 6 1.7 13 3401.3 1 6 2.5 1

17718.5 1 19
3.9 4 23691.4 1 38 -0.7 608237.6 4073621.2 0.1 F4

oC 3.5
4.2\TTAG: 380499\ 0\
05:48:38.4 15 29739.5 1 6 1.6 13 3401.9 1 6 2.2 1

17718.0 1 18
4.0 4 23691.5 1 39 -1.1 608237.9 4073621.6 0.1 F4

0 C 3.6
4.2\TTAG: 380523\ 0\
05:48:40.4 15 29739.4 1 6 1.7 13 3400.8 1 6 2.7 1

17718.6 1 18
3.9 4 23691.6 1 37 -0.5 608238.6 4073621.3 0.2 F4

0 C 3.6
4.2\TTAG: 380546\ 0\

42

APPENDIX--TV Ada Program Examples
-Example 1

-UNiT_NAME IDATAIN.A

-CSCINAME

-UNiT_DESCRIPTON I TIS PROGRAM IS DESIGNED FOR RECLEVED DATA FROM

-- EXTERNAL DEVICE AND DISPLAYED ON THE SCREEN.

-INPUTS I GPS DATA FILES i.e. line56.dat

-OUTPUTS I read on the screen

--CREATED 113 March 1991

-- AUTHOR I Chin, Yu-chi

-ADVISOR I Dr. Uno R. Kodres

-DATE--------- AUTHOR------ REVISION # -- PR #--- TiTLE ------

-- 0313/1991 Chin, Yu-chi 1 DATAIN.A

with BIT, TEXT2JO0;

use BIT, TEXT2JO;

procedure DATA_iN is

PORTNIJM :INTEGER :=1016;

VALUE SYSTEM.BYTE;

begin

INPORT (PORTN1JMALUE);

PUT_...INE ("Port number " &INTEGER'IMAGE(PORTNUM)&

" is currently " &SYSTEM.BYTE'IMAGE(VALUE));

PUT-LINE ("-------DATA RECEIVED -----------

end DATA JN;

43

-- Example 2

-- DATE --------- AUTHOR ------ REVISION # -- PR # ---- TITLE

--9 April 1991 Chin, Yu-Chi 5 testl2.a

with BIT, TEXTIO;

use BIT, TEXT_10;

procedure TEST12 is

LINEINT,

PORTNUM : INTEGER;

LINE,

DATA,

VALUE SYSTEM.BYTE;

COUNT INTEGER := 0;

package INTEGERINOUT is new INTEGERJO(INTEGER);

use INTEGERINOUT;

begin

loop

loop

INPORT (1021, LINE); -- check 3fd see if input data is available

exit when TSTBrT(INTEGER(LINE),0); -- loop until it's availab

end loop;

LINEINT:= INTEGER(LINE); -- convert LINE into integer

CLRBIT(LINEINT,0); -- clear 3fd

OUTPORT(1021,SYSTEM.BYTE(LINE_INT)); -- put value back to 3fd
INPORT (1016, DATA); -- read data from 3f8

PUT (CHARACTER'VAL(DATA)); -- put data on the screen

exit when INTEGER(DATA) = 93; -- exit when input data is ']'
end loop;

delay 1.0; -- test delay

PUTLINE ("END OF RECEIVING DATA");

end TEST12;

44

-- Example 3

-- UNITNAME I TEST3I.A

--UNITDESCRIPTION I This program is designed to set baud-rate form 1200 - 9600 for the
--system which we want to use, the soft ware can easily expand by set more rate settings.

-- AUTHOR I CDR. Chin, Yu-Chi

-- ADVISOR I Dr. Uno R. Kodres

with BIT, TEXT IO;

use BIT, TEXT 10;

procedure TEST31 is

CH : INTEGER;

package iNTEGER_INOUT is new INTEGERJIO(INTEGER);

use INTEGERINOUT;

procedure TEST24(PORTI, PORT2, PORT3, PORT4 : in INTEGER) is

NUMBER,

SELECTION : INTEGER;

begin

OUTPORT (PORTI, 128); -- access Baud-Rate- Divisor

PUTLINE ("SET THE SYSTEM BAUD-RATE AS YOUR DESIRE");

PUTLINE (" --- SELECTION IS --

PUTLINE(" 1 = 1200 ");

PUTLINE (" 2 = 2400 ");

PUTLINE (" 3 = 4800 ");

PUTLINE (" 4 = 9600 ");

NEW_LINE;

GET(SELECTION);

case SELECTION is

when I =>

NUMBER:= 96; -- Baud-Rate = 1200

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SETTING TO 1200 NOW");

45

when 2 =>

NUMBER:= 48; -- Baud-Rate = 2400

PUT_LINE ("YOUR SYSTEM BAUD-RATE IS SETTNG TO 2400 NOW");

when 3 =>

NUMBER:= 24; -- Baud-Rate = 4800

PUT_LINE ("YOUR SYSTEM BAUD-RATE IS SETTING TO 4800 NOW");

when 4 =>

NUMBER := 12; -- Baud-Rate = 9600

PUTLINE ("YOUR SYSTEM BAUD-RATE IS SETTING TO 9600 NOW");

when others =>

PUT_LINE (" WRONG SELECTION !! TRY AGAIN!! ");

end case;

OUTPORT (PORT2,SYSTEM.BYTE(NUMBER));

-- convert the number into system.byte

-- put LSB on 3f8 or 2f8 (com I or com2)set Baud

OUTPORT (PORT3, 00); -- put MSB on 3f9 or 2f9

OUT)PORT (PORTI, 03); -- no p one s 8 bit

OUTPORT (PORT4, 03); -- set modem control register

OUTPORT (PORT3, 00); -- interrupt control register (disable)

NEW-LINE;

PUTLINE ("BAUD-RATE SETTING IS DONE!! ");

end TEST24;

begin

NEW_LINE(5); SETCOL(5);

PUT_LINE("This program is designed to help you setup the system BAUD_RATE");

NEWLINE;

PUTLINE("Make your choose for COM1 or COM2 first: use -1- or -2-");

GET(CH);

case CH is

when I =>

TEST24(1019, 1016, 1017, 1020);

PUT_LINE("FOR COMI SETTING");

when 2 =>

46

TEST24(763, 760, 761, 764);

PUT_-LINE('FOR COM2 SETITING");

when others =>

PUT_LINEC'WRoNG KEYH! TRY AGAINH!!");

end case;

end TEST3I1;

47

-- Example 4

-- UNIT_NAME I test35.a

-- UNIT_DESCRIPTION I This program is designed for Suitcase Navigation

-- I data logger which log data from GPS sensor store

-- I it into a file and print the data string by the

-- I user desire command

-- INPUTS I GPS input raw data

-- OUTPUTS I data record

-- CREATED 112 May 1991

-- AUTHOR I Chin, Yu-Chi

-- ADVISOR I Uno R. Kodres

with BIT, KEYBOARD, TEXTJO, RTEXT IO;

use BIT, KEYBOARD, TEXT_10, RTEXTjIO;

procedure TEST35 is

package INTEGERINOUT is new INTEGERIO(INTEGER);

use INTEGERINOUT;

FILE, THEFILE : FILETYPE;

ROCK :INTEGER;

ABORTREQUEST : EXCEPTION;

-- A procedure to print the desire data-string

procedure PRINTDATA is

ITEM : CHARACTER;

FILE FILETYPE;

begin

NEWPAGE;

NEWLINE(5);

PUT_LINEC The current datastring is:

NEW_LINE;

OPEN (FILE, IN-FILE, NAME => "POS.OUT"); -- open the update file

while not ENDOFFILE(FILE) loop

GET(FILE, ITEM); -- get the data

PUT(ITEM); -- put it on the screen

48

end loop;

NEW_LINE(10);

CLOSE(FILE); -- line 140

end PRINT-DATA;

-- A procedure as data logger

procedure DATALOGGER is

A_CHAR : CHARACTER;

VALUE SYSTEM.BYTE;

-- A function to get data from GPS sensor

function GET_CHAR return CHARACTER is

LINE, DATA: SYSTEM.BYTE;

LINEINT : INTEGER;

begin

loop

INPORT (765, LINE); -- check 2fd input data is available

exit when TSTBIT(INTEGER(LINE), 0); -- loop until it's available

end loop;

LINEINT:= INTEGER(LINE); -- convert LINE into integer

CLRBIT(LINEINT, 0); -- clear TESTBIT

INPORT (760, DATA); -- read data from 2f8

OUTPORT(765, SYSTEM.BYTE(LINENT)); -- put value back to 2fd

if INTEGER(DATA) > 127 then -- a test loop for bad data

DATA:= 42; -- if not a character use

end if;

return CHARACTER'VAL(DATA);

end GETCHAR;

begin

PUT_LINE("Waiting for the first legal character");

loop -- wait for the first legal char

OPEN (FILE, OUTFILE, NAME => "POS.OUT"); -- open a temp out file

while GETCHAR/= 'I' loop -- process each message received

null; -- and wait for start character

end loop;

PUT (''); -- put start char on the screen

49

PUT (THEFILE, '['); -- put start char to file

PUT (FILE, '['); -- put start cgar to temp file

loop --

A_CHAR:- GETCHAR; -- get and put the message

PUT (ACHAR); -- put data on the screen

PUT (THIE FILE, ACHAR); -- and to the file

PUT (FILE, ACHAR); -- and to the temp file

exit when A_CHAR = ']'; -- line 185

end loop; -- get another set of data

CLOSE(FILE); -- close temp file here

exit when KEYPRESS; -- exit loop

end loop;

end DATA_LOGGER;

begin
OPEN (THEFILE, OUT_FILE, NAME => "POS.DAT");-- make file pos.dat availabe

loop

if KEYPRESS(CURRENTINPUT) then -- press SpaceBar to interupt and

NEW_LINE; -- ready to print the screen

PUTLINE("New data_string is as follow :");

NEWLINE; -- line 201

ROCK := KEYVALUE; -- assign keypress to variable

if ROCK = 32 then -- if SpaceBar is true then

PRINTDATA; -- bring the data to the screen

elsif ROCK = 81 or ROCK = 113 then -- press (q) to exit the program

raise ABORTREQUEST; -- raise exception line 206

end if; -- else program will keep running

end if; -- no interuption

DATA-IOGGER; -- program to log sensor data

end loop;

exception

when ABORTREQUEST => -- exit the program

CLOSE (THEFILE);

PUTLINE ("END OF PROGRAM TEST35.A");

end TEST35;

5o

APPENDIX--V: USER's MANUAL (Operations and Responses)

0-1. Use RS-232 cable to connect the external Nay_Sensor and the Computer.

0-2. Connected the antenna and printer. Use Figure-9.

0-3. Start up the NavSensor (GPS), and set the ASCII output mode.

-- Select POS (position data) as the main position data, alternative selection will be MEAS

-- (measurement data), do not select BINPOS or BINMEAS.

- (Use Sensor's operation manual to obtain the function control)

0-4. Insert the disk and find out the working file (DATA_LOG.EXE).

0-5. key in DATALOG and RETURN.

R-1. Instructions to operate the program

"A brief guide to use this program:

1. Make sure your system BaudRate is matched

2. Run the procedure DATALOGGER at proper COMPORT

3. Use SpaceBar and then PrtSc to get updated datastring

4. Use (q) or (Q) to exit the program"

R-2. Delay 5.0 seconds

"Give the COMPORT number in (1) or (2)"

0-6. Key in your COMPORT set up.

R-3. when 1 =>

"You've set Port I = 1021, and Port2 = 1016"

when 2 =>

"You've set Port 1 = 765, and Port2 = 760"

R-4. "Make your choice for COMI or COM2: use -1- or -2-"

0-7. Again you want to set the BaudRate at the COMPORT, Key in 1 or 2

-- In this program set 1200 is relatively better than the others

R-5. when 1 =>

FOR COM 1 SETTING

when 2 =>

FOR COM2 SETITING

R-6. SET THE SYSTEM BAUD-RATE AS YOU DESIRE

SELECTION IS ---

1 = 1200

51

2 = 2400

3 = 4800

4 = 9600

0-8. Key in your selection

R-7. when 1 =>

YOUR SYSTEM BAUD-RATE IS SET TO 1200 NOW

when 2 =>

YOUR SYSTEM BAUD-RATE IS SET TO 2400 NOW

when 3 =>

YOUR SYSTEM BAUD-RATE IS SET TO 4800 NOW

when 4 =>
YOUR SYSTEM BAUD-RATE IS SET TO 9600 NOW

R-8. Waiting for the first legal character

-- At this stage the program is running a procedure named LOGGER and

-- the function GETCHAR keep checking the line register to seek the

-- legal character "[" (user defined) then pull it in to the system.

0-9. By observation the screen displays, you should be able to identify the

the transmittion rate is good or not, if not, make your adjustment.

0-10. Use (Q) or (q) to quit the program, and reset the BaudRate or you can

use it any time when you want to quit the job.

R-9. END OF PROGRAM DATA_LOGGER.A

-- Warning ** When you quit the job, the raw data file will be renewed also. The best way

is pull the data out to another disk then reset the system as you desire. (copy

POS.DAT to A: POS0001.DAT)

0-11. Use SP (SpaceBar) to get the current position datastring, when you

hit the SP :

R-10. The current datastring is:

[05 THU 143 23-MAY-91 00:09:44 36:35.6893N 121:52.5101W -0015 01.7 787236 +00

0.0 000.0 274.5 +3.0286E- 11 4092 3 13,6,12,21

0-12. Use print screen (Shift PrtSc) to get the hardcopy if you wish to

52

R-11. Printer prints the screen status.

R-12. Program keep on surveying, displaying the data on the screen.

NOTES: Things you might want to know:

1. Normally the GPS is default its functions for its own benefits, we shall carefully follow the

Sensor's manual to operate it.

2. Trimble-4000S needs to set up a reference position and it should be with in 0.5 degree.

3. Offset position should normally be zeros.

4. The position will drift if the PDOP is over 15.0.

5. The external computer may have difficulty keeping up with the data at high rates, and may

lose characters. If all data rates are above 2400, then the data communication is unreliable.

6. There are two separate program TEST31.EXE, and TEST35.EXE which handle the COM_

PORT selection and BAUDRATE setting separate from DATALOGGER, User can operate

TEST31 to set up the connection, then run the program TEST35 to collect the navigation sensor

data. (Source code exists in Appendix.4).

53

APPENDIX--VI: TEXT NOTES FROM GRADY BOOCH

EXCEPTION HANDLING AND LOW-LEVEL FEATURES

Where as assembly languages force us to work at the most primitive machine levels, high-

order languages usually constrain us to work only at more abstract levels. Since programming in a

high-order language is much more productive than in an assembly language, this is generally not

a problem. However, we must sometimes refer to system-dependent features, such as the location

of an input/output port or the representation of some data structure in memory. In the past, because

high-order languages did not provide appropriate expressive power, we were forced to use a com-

bination of high-order and assembly-language programs in solutions, an approach that compli-

cated the solutions and hindered readability and maintainability.

In embedded computer systems, run-time reliability is also an important factor, (We are

relating a satellite positioning system) there are sometimes exceptional situations beyond our

control, such as hardware failures in peripheral devices or unexpected bursts of input data. We

cannot predict when such situation might occur, but in a reliable system, they must be planned

for. As a high-level language, Ada supports software development in both expressing low-level

machine features and system-dependent features. In the best case, we would like the program to

be able to respond to the exception, and continue processing with reduced capability. Ada permits

us to write exception handlers to capture both predefined and user-defined exceptions.

[Reference Booch Chapter- 171

-- SHOWERROR : exception;

-- When something happened;

-- raise SHOWERROR;

54

REPRESENTATION SPECIFICATION

As mentioned earlier, in embedded computer systems we must concern ourselves not

only with run-time reliability, but we must often refer to machine-dependent characteristics as

well. Here we are designing our own I/O package for a unique device and need to refer to I/O ports

at a certain location in memory. The desire is not to step outside our language, Ada provides

several constructs with which we may refer to such low-level features (Ada provides four classes

of representation specifications, namely: length specification, numeration type representation,

record type representation, address specification).

Representation specifications should be applied only for the purpose of efficiency, this

system required for interfacing with external systems, Ada lets us create abstractions about them

in high level terms. When we then use one of the features, we are actually writing a particular bit

string, and this same feature may be used to express the assembly language mnemonics of our

target machine. Note that we may not associate two representations in a single task to avoid

program errors. But there may be cases at different times where two representations are more
efficient or perhaps map our view of the world better. Because we want to reorganize the record
to be used in another task, we spool a given record to be saved on a secondary storage device. Our

solution would be to have one index searching representation and one storage representation, the

program control the data effectively.

55

LIST OF REFERENCES

1. Dr. Uno R. Kodres, research proposal for "Small Navigation Data Logger Software System".

2. Edward Yourdon, "Modem Structure Analysis" 1989 by Prentice-Hall, Inc.

3. Grady Booch, Second Edition "Software Engineering with Ada", 1986 by The Benjamin/Cum-
mings Publishing Company, Inc.

4. World Range Suitcase Navigation Feasibility Study, document dated 30 July, 1990, B. Cohenour,
PMTC, RDD, Code 3144.

5. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A-1983, Unite
States Department of Defense.

6. Ian Sommerville and Ron Morrison, "Software Development with Ada" 1987, Assigned text for
direct study.

7. Berzins and Luqi, "Software Engineering with Abstractions" 1991, by Addison-Wesley Publish-
ing Company, Inc.

8. Trimble Navigation Model 4000SL/SLD GPS Surveyor Operation Manual.Trimble Navigation
Ltd. 585 North Mary Avenue Sunnyvale, CA 94086 800-TRIMBLE.

9. Trimble model 4000 remote control RS-232 interface operation manual. April 1990 Revision D.
Trimble Navigation, Ltd. 585 North Mary Avenue Sunnyvale, CA 94086-3642 800-TRIMBLE

10. IBM Personal Computer Hardware Reference Library, April, 1983.
International Business Machines Corporation P.O. Box 1328-W Boca Raton, Florida 33432

11. IntegrAda Version 4.2.1 Libraries.AETECH 380 Stevens Ave. Suite 212, Solana Beach, CA.
92075

56

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 221314

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

3. Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

4. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Prof. Uno R. Kodres, Code CS/Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943

6. AEGIS Modeling Laboratory, Code CS 6
Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943

7. Bernie Cohenour, Code 3334 3
Pacific Missile Test Center
Point Mugu, CA 93042-5000

8. RADM. Hung Cheng-Lo 2
P.O. Box 9617
Washington, D.C. 20016

57

